Some Decomposition of Normal Projective Curvature Tensor I

${ }^{1}$ Fahmi Yaseen Abdo Qasem, ${ }^{2}$ Abdalstar Ali Mohsen Saleem
${ }^{1,2}$ Dept.of Math.,Faculty of Education-Aden, Univ.of Aden, Khormakssar, Aden.,Yemen

Abstract

In the present paper, a Finsler space $\boldsymbol{F}_{\boldsymbol{n}}$ for which the normal projective curvature tensor $\boldsymbol{N}_{\boldsymbol{j} k \boldsymbol{h}}^{\boldsymbol{i}}$ satisfies $N_{j k h}^{i}=y^{i} Y_{j k h}$ and $N_{j k h}^{i}=y_{j} Y_{k h}^{i}$, where $Y_{j k h}$ and $Y_{k h}^{i}$ are non-zero tensor fileds called decompositions tensor fields, we study the properties of such decomposition and decomposition of projective curvature tensor.

Keywords: a Finsler space, decompositions tensor, decomposition of projective curvature tensor.

1. INTRODUCTION

Ram Hit [6] studied a Finsler space whose curvature tensor is decomposable in the form $H_{j k h}^{i}=y^{i} Y_{j k h}$. P. N. Pandey ([2],[3]), H. D. Pande and T. A. Khan [1], Prateek Mishra, Kaushal Srivastava and S. B. Mishra [4] dialed with the problem decomposability of curvature tensor L. Berwald and E. Cartan, a number of examples of Finsler space whose curvature tensor are not decomposable have been cited, a necessary and sufficient condition for decomposability of curvature tensor has been obtained. F. Y. A. Qasem [5] discussed all possible decomposition normal projective curvature tensor $N_{j k h}^{i}$ in a Finsler space, i. e. a number of examples of Finsler space whose normal projective curvature tensor $N_{j k h}^{i}$ is not decomposable have been cited and different results have been obtained.

Let us consider a set of quantities $g_{i j}$ defined by

$$
\begin{equation*}
g_{i j}(x, y)=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} F^{2}(x, y) \tag{1.1}
\end{equation*}
$$

The tensor $g_{i j}(x, y)$ is positively homogeneous of degree zero in y^{i} and symmetric in i and j . According to Euler's theorem on homogeneous functions, the vector y_{i} satisfies the following relations

$$
\begin{equation*}
y_{i} y^{i}=F^{2}, \tag{1.2}
\end{equation*}
$$

The tensor $H_{j k h}^{i}$ is called h-curvature tensor, we shall call it h-curvature tensor of Berwald. It is positively homogeneous of degree zero in y^{i} and skew-symmetric in its last two lower indices which defined by

$$
H_{j k h}^{i}:=\partial_{h} G_{j k}^{i}+G_{j k}^{r} G_{r h}^{i}+G_{r k}^{i} G_{j}^{r}-h / k .
$$

The above tensor satisfies the following:
a) $H_{j k h}^{i} y^{j}=H_{k h}^{i}$
and
b) $H_{r k h}^{r}=H_{k h}-H_{h k}$.

The deviation tensor H_{h}^{i} is positively homogeneous of degree two in y^{i}. In view of Euler's theorem on homogeneous functions we have the following relations
a) $H_{k h}^{i} y^{k}=H_{h}^{i}$,

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (137-142), Month: October 2015 - March 2016, Available at: www.researchpublish.com
b) $H_{k}=H_{k r}^{r}$
and
c) $H=\frac{1}{n-1} H_{r}^{r}$,
where H is a scalar called curvature scalar. Since contracting of indices does not change the homogeneity, hence, the curvature vector H_{k} and the curvature scalar H are also homogeneous of degree one and two in y^{i}, respectively.

2. NORMAL PROJECTIVE CURVATURE TENSOR

K. Yano [7] defined the normal projective connection $\Pi_{j k}^{i}$ by

$$
\begin{equation*}
\Pi_{j k}^{i}=G_{j k}^{i}-\frac{1}{n+1} y^{i} G_{j k r}^{r} \tag{2.1}
\end{equation*}
$$

The connection coefficients $\Pi_{j k}^{i}$ is positively homogeneous of degree zero in y^{i} 's and symmetric in their lower indices.
P.N. Pandey [3] obtained a relation between the normal projective curvature tensor $N_{j k h}^{i}$ and Berwald curvature tenser $H_{j k h}^{i}$ as follows:

$$
\begin{equation*}
N_{j k h}^{i}=H_{j k h}^{i}-\frac{1}{n+1} y^{i} \dot{\partial}_{j} H_{r k h}^{r} \tag{2.3}
\end{equation*}
$$

The normal projective curvature tensor $\mathrm{N}_{j k h}^{i}$ is homogeneous of degree zero in y^{i}.
Contracting the indices i and j in (2.3) and using the fact that the tensor $\mathrm{H}_{r k h}^{r}$ is positively homogeneous of degree zero in y^{i}, we get

$$
\begin{equation*}
N_{r k h}^{r}=H_{r k h}^{r} . \tag{2.4}
\end{equation*}
$$

Transvecting (2.3) by y^{j} and using (1.3a), we get

$$
\begin{equation*}
N_{j k h}^{i} y^{j}=H_{k h}^{i} \tag{2.5}
\end{equation*}
$$

The normal projective curvature tensor $N_{j k h}^{i}$ is skew-symmetric in its last two lower indices, i.e.

$$
\begin{equation*}
N_{j k h}^{i}=-N_{j h k}^{i} . \tag{2.6}
\end{equation*}
$$

The normal projective curvature tensor $N_{j k h}^{i}$ also satisfies the identity

$$
\begin{equation*}
N_{j k h}^{i}+N_{k h j}^{i}+N_{k j h}^{i}=0 \tag{2.7}
\end{equation*}
$$

Contracting the indices i and h in (2.3), we get

$$
\begin{equation*}
N_{j k}=H_{j k}-\frac{1}{n+1} y^{i} \dot{\partial}_{j} H_{r k i}^{r} \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
N_{j k}=H_{j k}-\frac{1}{n+1}\left\{\dot{\partial}_{j}\left(H_{r k i}^{r} y^{i}\right)-H_{r k j}^{r}\right\} . \tag{2.9}
\end{equation*}
$$

The projective curvature tensor $W_{j k h}^{i}$ and the normal projective curvature tensor $N_{j k h}^{i}$ are connected by

$$
\begin{equation*}
W_{j k h}^{i}=N_{j k h}^{i}+\left(\delta_{k}^{i} M_{h j}-M_{k h} \delta_{j}^{i}-k / h\right), \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{k h}:=-\frac{1}{n^{2}-1}\left(n N_{k h}+N_{h k}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{j k}:=N_{j k r}^{r} . \tag{2.12}
\end{equation*}
$$

The tensor $W_{j k h}^{i}$ satisfies the following identities

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

$$
\begin{equation*}
\text { a) } W_{j k h}^{i} y^{j}=W_{k h}^{i} \tag{2.13}
\end{equation*}
$$

and
a) $W_{k h}^{i} y^{k}=W_{h}^{i}$.

3. DECOMPOSITION OF NORMAL PROJECTIVE CURVATURE TENSOR IN FINSLER SPACE

Let us consider the decompositions of the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is of the type $(1,3)$ as follows :

$$
\begin{equation*}
N_{j k h}^{i}=y^{i} Y_{j k \boldsymbol{k}} \tag{3.1}
\end{equation*}
$$

and
(3.2) $\quad N_{j k h}^{i}=y_{j} Y_{k h}^{i}$,
where $Y_{j k h}$ and $Y_{k h}^{i}$ are non-zero tensor fileds called decompositions tensor fields.
Further considering the decomposition of the tensor field (3.1) in the form

$$
\begin{equation*}
N_{j k h}^{i}=y^{i} y_{j} Y_{k h} \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
N_{j k h}^{i}=y^{i} y_{h} Y_{j k} . \tag{3.4}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
y^{j} \lambda_{j}=\sigma, \tag{3.5}
\end{equation*}
$$

such λ_{j} as recurrence vector and σ is decomposition scalar.
In view of (3.1), the identities (2.6) and (2.7), can be written as

$$
\begin{equation*}
Y_{j k h}+Y_{j h k}=0 \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{j k h}+Y_{k h j}+Y_{h j k}=0 . \tag{3.7}
\end{equation*}
$$

Thus, we conclude
Theorem 3.1. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.1), then the decomposition tensor field $Y_{j k h}$ satisfies the identities (3.6) and (3.7).

In view of (3.2), the identities (2.6) and (2.7), can be written as

$$
\begin{equation*}
Y_{k h}^{i}+Y_{h k}^{i}=0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{j} Y_{k h}^{i}+y_{k} Y_{h j}^{i}+y_{h} Y_{j k}^{i}=0 . \tag{3.9}
\end{equation*}
$$

Thus, we conclude
Theorem 3.2. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.2), then the decomposition tensor field $Y_{k h}^{i}$ satisfies the identities (3.8) and (3.9).

Transecting (3.2) by y^{j}, using (2.5) and (1.2), we get

$$
\begin{equation*}
H_{\mathrm{kh}}^{i}=F^{2} Y_{k h}^{i} . \tag{3.10}
\end{equation*}
$$

Transvecting (3.10) by y^{k} and using (1.4a), we get
(3.11) $\quad H_{h}^{i}=F^{2} Y_{h}^{i}$,

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
where $Y_{k h}^{i} y^{k}=Y_{h}^{i}$.
Contraction of the indices i and h in (3.10) and using (1.4b), we get
(3.12) $H_{k}=F^{2} Y_{k}$,
where $Y_{k r}^{r}=Y_{k}$.
Contraction of the indices i and h in (3.12) and using (1.4c), we get

$$
\begin{equation*}
H=\frac{F^{2}}{n-1} Y, \tag{3.13}
\end{equation*}
$$

where $Y_{r}^{r}=Y$.
Thus, we conclude
Theorem 3.3. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.2), then the $h(v)$ - torsion tensor field $H_{k h}^{i}$, the deviation tensor field H_{h}^{i}, the vector field H_{k} and the scalar H are decomposable in the form (3.10), (3.11), (3.12) and (3.13), respectively.

Contraction of the indices i and j in (3.2) and using (2.4), we get

$$
\begin{equation*}
H_{r k h}^{r}=y_{r} Y_{k h}^{r} . \tag{3.14}
\end{equation*}
$$

Using (1.3b) in (3.14), we get
(3.15) $\quad Y_{k h}^{r}=\frac{1}{y_{r}}\left(H_{h k}-H_{k h}\right)$.

In view of (3.2), equ. (3.15) can be written as

$$
\begin{equation*}
N_{j k h}^{i}=\frac{y^{i}}{y_{j}}\left(H_{h k}-H_{k h}\right) . \tag{3.16}
\end{equation*}
$$

Transecting (3.16) by y^{j} and using (2.5), we get

$$
\begin{equation*}
H_{k h}^{i}=y^{i}\left(H_{h k}-H_{k h}\right) \tag{3.17}
\end{equation*}
$$

Thus, we conclude
Theorem 3.4. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.2), then the normal projective curvature tensor $N_{j k h}^{i}$ and the $h(v)$ - torsion tensor $H_{k h}^{i}$ are defined by (3.16) and (3.17) respectively, the tensor $H_{r k h}^{r}$ is decomposable in the form (3.14) and the decomposable tensor field $Y_{k h}^{i}$ satisfies (3.15).

Contraction of the indices i and j in (3.4) using (2.4), we get

$$
\begin{equation*}
H_{r k h}^{r}=y_{h} y^{r} Y_{r k} . \tag{3.18}
\end{equation*}
$$

Using (1.3b) in (3.18), we get

$$
\begin{equation*}
Y_{r h}=\frac{1}{y_{h} y^{r}}\left(H_{h k}-H_{k h}\right) . \tag{3.19}
\end{equation*}
$$

In view of (3.4), equ. (3.19) can be written as

$$
\begin{equation*}
N_{j k h}^{i}=\frac{y^{i}}{y^{j}}\left(H_{h k}-H_{k h}\right) . \tag{3.20}
\end{equation*}
$$

Transecting (3.20) by y^{j} and using (2.5), we get

$$
\begin{equation*}
H_{k h}^{i}=y^{i}\left(H_{h k}-H_{k h}\right) \tag{3.21}
\end{equation*}
$$

Thus, we conclude
Theorem 3.5. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.4), then the normal projective curvature tensor $N_{j k h}^{i}$ and the $h(v)$ - torsion tensor $H_{k h}^{i}$ are defined by (3.20) and (3.21) respectively, the tensor $H_{r k h}^{r}$ is decomposable in the form (3.18) and the decomposable tensor field $Y_{k h}$ satisfies (3.19).

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Contraction of the indices i and h in (3.3) and using (2.12), we get

$$
\begin{equation*}
N_{j k}=y_{j} y^{r} Y_{k r} \tag{3.22}
\end{equation*}
$$

Contraction of the indices i and j in (3.3), using (2.4) and (1.2), we get

$$
\begin{equation*}
H_{r k h}^{r}=F^{2} Y_{k h} \tag{3.23}
\end{equation*}
$$

In view of (3.22), (3.23), (3.3) and (1.2), equ. (2.8) can be written as

$$
\begin{equation*}
H_{j k}=y_{j} y^{r} Y_{k r}+\frac{y^{r}}{n+1} \dot{\partial}_{j} F^{2} Y_{k r} \tag{3.24}
\end{equation*}
$$

Thus, we conclude
Theorem 3.6. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.4), then the Ricci tensor $N_{j k}$ is decomposable in the form (3.23) and the Ricci tensor $H_{j k}$ satisfies (3.24).

Contraction of the indices i and h in (3.4) using (2.12) and (1.2), we get

$$
\begin{equation*}
N_{j k}=F^{2} Y_{j k} \tag{3.25}
\end{equation*}
$$

In view of (3.23), (3.25), (3.4), and (1.2), equ. (2.9) can be written as

$$
\begin{equation*}
H_{j k}=F^{2} Y_{j k}+\frac{1}{n+1}\left(y_{j} y^{r} Y_{r k}+F^{2} Y_{j k}+y^{r} F^{2} \dot{\partial}_{j} Y_{r k}\right) \tag{3.26}
\end{equation*}
$$

Thus, we conclude
Theorem 3.7. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.4), then the Ricci tensor $N_{j k}$ is decomposable in the form (3.25) and Ricci tensor $H_{j k}$ satisfies (3.26).

Further considering the decomposition of the tensor field $Y_{j k h}$ in the form

$$
\begin{equation*}
Y_{j k h}=\lambda_{j} Y_{k h} . \tag{3.27}
\end{equation*}
$$

In view of (2.6), (3.3) and (3.27), we get

$$
\begin{equation*}
Y_{k h}=-Y_{h k} . \tag{4.28}
\end{equation*}
$$

Thus, we conclude
Theorem 3.8. In an NPR- F_{n}, under the decomposition (3.1) and (3.27) the decomposition tensor field $Y_{k h}$ is skew symmetric.

4. DECOMPOSITION OF PROJECTIVE CURVATURE TENSOR IN FINSLER SPACE

Let us consider a Finsler space whose the normal projective curvature tensor $N_{j k h}^{i}$ is decomposable in the form (3.3).
In view of (3.3), (2.12) and (3.22), equ.(2.11) can be written as

$$
\begin{equation*}
M_{j k}=-\frac{y_{j} y^{r}}{n^{2}-1}\left(n Y_{k r}+Y_{r k}\right) . \tag{4.1}
\end{equation*}
$$

Thus, we conclude
Theorem 4.1. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.3) and under the decomposition (3.22), the tensor $M_{j k}$ satisfies the equ. (4.1).

In view of (3.3) and (4.1), equ. (2.10) can be written as

$$
\begin{equation*}
W_{j k h}^{i}=y^{i} y_{j} Y_{k h}-\frac{y^{r}}{n^{2}-1}\left\{\delta_{k}^{i}\left(n Y_{h r}+Y_{r h}\right) y_{j}-y_{h}\left(n Y_{k r}+Y_{r k}\right) \delta_{j}^{i}-k / h\right\} . \tag{4.2}
\end{equation*}
$$

Transvecting (4.2) by y^{j} and y^{k}, using (2.13a), (2.13b) and (1.2), we get

$$
\begin{equation*}
W_{k h}^{i}=y^{i} F^{2} Y_{k h}-\frac{y^{r}}{n^{2}-1}\left\{\delta_{k}^{i}\left(n Y_{h r}+Y_{r h}\right) F^{2}-y_{h}\left(n Y_{k r}+Y_{r k}\right) y^{i}-k / h\right\} . \tag{4.3}
\end{equation*}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (137-142), Month: October 2015 - March 2016, Available at: www.researchpublish.com
and

$$
\begin{equation*}
W_{h}^{i}=y^{i} F^{2} Y_{k h} y^{k}-\frac{y^{r} y^{i}}{n^{2}-1}\left\{\left(n Y_{h r}+Y_{r h}\right) F^{2}-y_{h}\left(n Y_{k r}+Y_{r k}\right) y^{k}-k / h\right\} \tag{4.4}
\end{equation*}
$$

Thus, we conclude
Theorem 4.2. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.3) and under the decomposition (3.22), then the projective curvature tensor $W_{j k h}^{i}$, the projective torsion tensor $W_{k h}^{i}$ and the projective deviation tensor W_{h}^{i} satisfy equ.s (4.2), (4.3) and (4.4), respectively.

Let us consider a Finsler space whose the normal projective curvature tensor $N_{j k h}^{i}$ is decomposable in the form (3.4).
In view of (3.25), (3.4) and (2.11), equ. (2.11) can be written as

$$
\begin{equation*}
M_{j k}=-\frac{F^{2}}{n^{2}-1}\left(n Y_{j k}+Y_{k j}\right) . \tag{4.5}
\end{equation*}
$$

Thus, we conclude
Theorem 4.3. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.4)and under the decomposition (3.25), the tensor $M_{j k}$ satisfies the relation (4.5).

In view of (3.4) and (4.5), equ. (2.10) can be written as

$$
\begin{equation*}
W_{j k h}^{i}=y^{i} y_{h} Y_{j k}-\frac{F^{2}}{n^{2}-1}\left\{\delta_{k}^{i}\left(n Y_{h j}+Y_{j h}\right)-\left(n Y_{k h}+Y_{h k}\right) \delta_{j}^{i}-k / h\right\} . \tag{4.6}
\end{equation*}
$$

Transvecting (4.6) by y^{j} and y^{k}, using (2.13a), (2.13b) and (1.2), we get

$$
\begin{equation*}
W_{k h}^{i}=y^{i} y_{h} Y_{j k} y^{j}-\frac{F^{2}}{n^{2}-1}\left\{\delta_{k}^{i}\left(n Y_{h j}+Y_{j h}\right) y^{j}-\left(n Y_{k h}+Y_{h k}\right) y^{i}-k / h\right\} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{h}^{i}=y^{i} y_{h} Y_{j k} y^{j} y^{k}-\frac{F^{2} y^{i}}{n^{2}-1}\left\{\left(n Y_{h j}+Y_{j h}\right) y^{j}-\left(n Y_{k h}+Y_{h k}\right) y^{k}-k / h\right\} \tag{4.8}
\end{equation*}
$$

Thus, we conclude
Theorem 4.4. If the normal projective curvature tensor $N_{j k h}^{i}$ of a Finsler space is decomposable in the form (3.4) and under the decomposition (3.25), the projective curvature tensor $W_{j k h}^{i}$, the projective torsion tensor $W_{k h}^{i}$ and the projective deviation tensor W_{h}^{i} satisfy equ.s (4.6), (4.7) and (4.8), respectively.

REFERENCES

[1] Pande, H.D. and Khan, T. A.: General Decomposition of Berwald's Curvature Tensor Fields in Recurrent Finsler Spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur., 55, (1973), 680-685.
[2] Pandey, P.N.: On Decomposability of Curvature Tensor of Finsler Manifold. Acta. Math. Acad. Sci. Hunger. 38, (1981), 109-116.
[3] Pandey, P.N.: Some Problems in Finsler Spaces. D. Sc. Thesis, University of Allahabad, (Allahabad) (India), (1993).
[4] Prateek Mishra, Kaushal Srivastava and Mishra, S. B.: Decomposition of Curvature Tensor Field $\mathrm{R}_{\mathrm{jkh}}^{++}{ }^{++}(x, y)$ in a Finsler Spaces Equipped With Non-Symmetric Connection, Journal of Chemical, Biological and Physical Sciences. An Int. Peer Review E-3 J. of Sci. Vol.3, No.2, (February 2013-April 2013), 1498-1503.
[5] Qasem, F.Y.A.: On Transformation in Finsler Spaces, D.Phil. Thesis, University of Allahabad, (Allahabad) (India), (2000).
[6] Ram Hit.: Decomposition of Berwald's Curvature Tensor Fields, Ann. Fac. Sci. (Kinshasa), 1, (1975), 220-226.
[7] Yano, K.: The Theory of Lie-Derivatives and its Applications, North - Holland publishing Co., (Amsterdam), (1957).

